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Abstract

System Health Management (SHM) systems have found their way into many safety-critical aerospace
and industrial applications. A SHM system processes readings from sensors throughout the system and uses
a Health Management (HM) model to detect and identify potential faults (diagnosis) and to predict possible
failures in the near future (prognosis). It is essential that a SHM system, which monitors a safety-critical
component, must be at least as reliable and safe as the component itself—false alarms or missed adverse
events can potentially result in catastrophic failures. The SHM system including the HM model, a piece of
software, must therefore undergo rigorous Verification and Validation (V&V).

In this paper, we will describe an advanced technique for the analysis and V&V of Health Management
models. Although our technique is generally applicable, we investigate in this paper HM models in the
form of Bayesian networks (BNs). BNs are a powerful modeling paradigm to express notions of cause and
effect, probability, and reliability. A BN model typically contains many parameters (e.g., thresholds for
discretization and conditional probability tables); they need to be set carefully for reliable and accurate HM
reasoning. We are investigating the use of Parametric Testing (PT), which uses a combination of n-factor
and Monte Carlo methods, to exercise our HM model with variations of perturbed parameters. Multivariate
clustering on the analysis is used to automatically find structure in the data set and to support visualization.
Our approach can yield valuable insights regarding the sensitivity of parameters and helps to detect safety
margins and boundaries.

As a case study we use HM models from the NASA Advanced Diagnostics and Prognostics Testbed
(ADAPT), which is a realistic hardware setup for a distributed power system as found in spacecraft or
aircraft.

I. Introduction

System Health Management (SHM) systems are ubiquitious in many safety-critical aerospace and in-
dustrial applications, including major components of aircraft (e.g., jet engines, hydraulics, or electric power
systems). During operation of the monitored system, the system processes readings from sensors throughout
the system and use a Health Management (HM) model to detect and identify faults (diagnosis). Often such
systems can trigger recovery activities. Consequently these systems are often referred to as FDDR (Fault
Detection, Diagnosis, and Recovery). SHM systems can also be used to predict failures in the near future
(prognosis). While many different approaches and tools for FDDR and SHM exist,' ™ this paper focuses on
techniques and tools using Bayesian networks.

Regardless of the chosen approach, an SHM system, which has to monitor a safety-critical component,
must be at least as reliable and safe as the component itself—false alarms or missed adverse events are not
acceptable. False alarms, which occur when the SHM system signals a failure but the monitored system
works flawlessly, are usually a nuisance (e.g., the notorious “Check Engine” light in your car). In safety-
critical systems, however, missed alarms can pose a severe safety threat. To ensure accuracy and efficacy, the
SHM system—a piece of software—must undergo rigorous V&V. Since most SHMs use a model-based design
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where the HM model is compiled for efficient execution, successful V&V must consist of model-level V&V
and code-level V&V (also called implementation-level V&V).% In this paper, we focus on model analysis. A
detailed and deep analysis of the HM model is an important V&V activity because it can reveal modeling
problems, incorrect parameters, or unusual parameter sensitivity—all of which can lead to an incorrect
diagnosis or prognosis and consequently false alarms or missed events.

Here we will describe research which has been performed using Health Management models that are
modeled using Bayesian networks (BNs), a very powerful modeling paradigm to express notions of cause
and effect, probability, and reliability surpassing many traditional (discrete) approaches toward HM like
table-driven techniques or fault trees.

The underlying idea is that each failure manifests itself in certain observable patterns even before having
a conceivable impact. However, the root causes only reveal themselves if all available information is taken
into account and non-trivial reasoning is performed. For example, the cause of an engine vibration can
be only be diagnosed as a worn-out bearing if additional information (like low oil pressure) is considered.
Figure 2 shows how this extremely simplistic example would be encoded in a Bayesian HM. Nodes attached
to sensors ("vibration”, ”oil pressure”) are shaded; “H_Bearing” is a diagnostic node. Edges indicate causal
dependencies and reasoning is governed by node probabilities. Conditional probability tables (CPTs), which
are attached to each node, describe in exact terms how the probability of the node depends on its local
neighbors. For example, the oil pressure is low in 90% of the cases when the bearing is worn. If the
bearing is OK, a low oil pressure (due to some other, unmodeled event) only shows up with a probability of
p = 0.05. In our example, HM reasoning would calculate the probability of the diagnosis given the sensor
values p(bearing = worn|{vibration, oilpressure}).

Eearing| OK | Worn
NO 09 0.05
YES 01 095

With the given probabilities, vibration alone would
not point to a worn bearing (the bearing would
report 91.24% OK without any pressure reading).
Only a low pressure reading in conjunction with vi-
bration indicates a worn bearing (p=63.3%).

Such networks, which can become very large,

OK | 089

: Wom| 801 may also be compiled into clique trees or arithmetic
Qil Pressure Bearing| OK | Worn . X . . .
ox oses| o1 circuits for efficient embedded execution. Arith-
Low |00 | 03 metic circuits® push much of the work involved in
performing inference to an offline phase, which can
Figure 1. Small example of a Bayesian Health Model then be amortized across many online queries'

A Bayesian HM model contains many parame-
ters (e.g., thresholds for discretization or node probability values), which must be set carefully for reliable
and correct HM reasoning. We are using Parametric Testing (PT), which uses a combination of n-factor and
Monte Carlo methods to exercise the HM model with variations of perturbed parameters. This technique,
which has been successfully applied to various application areas®7” avoids the excessive numbers of cases
caused by combinatorial exploration while at the same time yielding good coverage of the parameter space.
The result of model analysis is a large, high-dimensional data set. In our initial experiments described here,
we use multivariate clustering with a tool called AutoBayes to automatically find structure in the data set
and to support visualization. PT yields valuable insights on the sensitivity of parameters (in our experiments:
threshold parameters) and helps to detect safety margins and boundaries.

Although the results described in this paper are based upon ADAPT HM models, our analysis and
V&V approaches can be carried over to other applications and other HM modeling paradigms (e.g., table or
rule-based systems).

The rest of the paper is structured as follows: In the next section, we will present a short overview of the
ADAPT testbed and its Health Management models. Section I1I discusses our approach to Parametric Model
Analysis, its tool architecture and setup. We will discuss n-factor combinatorial exploration (Section III.B)
and results of experiments with parameter perturbation (Section III.C). Section IV is concerned with the
clustering analysis of the results as obtained by parametric testing. We will discuss feature selection, the
clustering tool (AutoBayes), and results obtained by this unsupervised machine learning technique. Finally,
Section V summarizes and discusses future work.
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II. Background: The ADAPT Testbed

As a case study, we investigate a real-world electrical power system known as the Advanced Diagnostics
and Prognostics Testbed (ADAPT).® ADAPT is located NASA Ames Research Center and is representative
of electrical power systems found in aerospace vehicles, having capabilities for power storage, power distribu-
tion, and power consumption. The schematic for ADAPT is shown in Figure 2. Power is provided by three
batteries, distributed over power lines and two voltage inverters (INV1, INV2) to two banks of loads, which
consist of fans, lamps, and pumps. Various computer-controlled relays (EY) and circuit breakers route the
power. This testbed is instrumented with a large number of sensors, which measure voltage, current, and
the position of the relay switches. Table 1 lists all major components, their acronyms, and health modes.

For our SHM system, we consider scenarios taken from the ADAPT testbed. These scenarios consist of
nominal runs, in which no faults were injected into the hardware system, faulty runs involving persistent
faults, and faulty runs involving intermittent faults.

In this paper we discuss the ProADAPT system,? 2 a system health management system for for ADAPT.
ProADAPT uses a BN to model ADAPT; this network is used to find the root cause(s) for unexpected
occurrences or failed components in the testbed, like a lack of power to the loads in ADAPT. Specifically,
ProADAPT is tasked to find out which ADAPT component(s) fail and at what time it (they) failed. By
looking at time series for sensors in ADAPT (voltage, current, temperature, ...), it can be relatively easy
to diagnose a faulty scenario. However, the process quickly becomes non-trivial when there are multiple
faults and relatively few sensors available. ADAPT provides a controlled environment in which to inject
failures, either through software or hardware, in a repeatable manner. In 2009 and 2010, the international
Diagnostics Competition (DXC) was arranged with ADAPT as the real-world testbed. ProADAPT is used in
conjunction with the DXC Framework which simulates realistic data collection in a diagnostic and prognostic
setting. Each scenario evaluated consisted of over 2200 sample points; the highest sampling frequenzy is 10
Hz. For ProADAPT, data from sensor components is input as evidence in the Bayesian network for each
timestep. Both nominal and faulty ADAPT scenarios were used for experimentation. Between DXC-09 and
DXC-10, the ProADAPT software had the best results in three out of four competitions in the industrial
track!0-11a,

Figure 2 shows the ProADAPT Bayesian network used in this case study. This network, which is a typical
size for this kind of application, contains 80 sensor nodes, most of which receive discretized sensor values as
inputs. Commands and their feedback are also input nodes. The health of all components is modeled using
120 system health nodes. Their most likely states correspond to the best system health estimate for the
electrical power network, computed using posterior probability for the BN. As an example, a health node
Health-of-Relay with states healthy (posterior 0.3), stuck-open (posterior 0.65) and stuck-closed (posterior
0.05) might indicate that the corresponding relay is most likely broken and cannot close it contracts.

III. Parametric Model Analysis

Most sensor values obtained from the ADAPT testbed are continuous (e.g., voltage, temperature). In
order to input these values as evidence in our BN, which is inherently discrete, such continuous sensor
values must be discretized into node-specific states. This discretization is based on a number of continuous
thresholds. For example, a simple voltage sensor node V' could have two states: high and low voltage,
delimited by one threshold. If the sensor reads a continuous value v, the state of the sensor node in the
Bayesian network is determined to be high if v > © for a given threshold ©, otherwise it is discretized as a
low voltage.

Due to the continuous nature of many sensors in ADAPT and the use of thresholding, setting reliable
and precise thresholds is important to optimize the correctness of Bayesian network diagnosis. A threshold
analysis is therefore an important and integral part of SHM V&V, it serves to answer the following questions:

e To what degree does a particular threshold value © lead to undesirable effects (missed event or false
alarm)?

e Can interactions between several threshold values and different nodes lead to incorrect results?

2See https://c3.ndc.nasa.gov/dashlink/projects/36/ and https://www.phmsociety.org/competition/dxc/10 for further
information and data sets
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Figure 2. Schematics of ADAPT (left) and ProADAPT Bayesian network (adaptl0_vT7e, right)

e How critical is the exact value of a threshold ©7 For example, can a change of +5%, or +10%,
substantially and detrimentally impact the outcome of diagnostic reasoning?

The answers to the last questions are of particular importance and can be difficult to determine, as sensors
often produce noisy or biased data. In addition, the physical characteristics of sensors, as well as of other
parts of a system, may also change dramatically as a system ages. In order to minimize the negative impact
of these effects on diagnostic performance, one needs to be very careful when setting thresholds, which may
also need to be revised as a system ages. In the reminder of this paper we discuss how parametric testing
techniques can help in handling the challenges associated with these thresholds.

ITI.A. Testing Infrastructure

The basis for our parametric tests is a given ADAPT Bayesian network health model (see Figure 2) along
with one or more scenarios. In our case, scenarios are time sequences of sensor readings. A scenario can
be obtained from a healthy system (nominal scenario) or from a faulty system (fault scenario). In a fault
scenario, one or more (known) faults have been injected at specific times. Figure 3 illustrates the tool
architecture: given the model, the scenario, and test configuration information provided by the analyst, the
Parametric Analysis (PMA) tool automatically performs a multitude of tests using variations of thresholds.
The test output consists of the posterior probabilities of each of the health nodes over time. Because of
the large volume of data generated (some 30 GB per experiment), manual analysis of the raw data is not
possible. Consequently, the PMA tool currently produces two kinds of reports. The trace report allows the
analyst to study the outputs of selected health nodes Hy, Hs, ..., H,, for selected or all test runs. Navigation
capabilities built into this autogenerated HTML report supports the analyst.

As discussed before, simultaneous variations of multiple thresholds can have substantial effects. However,
multivariate analysis techniques are needed in general to reveal such, often subtle, situations. To tackle these
situations, our PMA tool offers clustering-based multivariate analysis and visualization techniques.

In the following, we will discuss the major components of the PMA tool in detail, the generation of
the threshold variations, report generation, and the multivariate data analysis. Please note that the PMA
tool architecture is not tied in any way to the analysis of thresholds. The tool could easily be configured to
perform parametric analysis of conditional probability values in Bayesian networks or of parametric scenarios,
for example.
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Part ‘ Prefix ‘ Mode (Health/Faulty) ‘ States

Battery | BATT | Healthy healthy
Voltage failure or drain | stuckDisabled

Circuit ISH Healthy healthy

breaker Stuck or failed open stuckOpen
Stuck or failed closed stuckClosed

Inverter | INV Healthy healthy
switched off stuckOpen

Relay EY Healthy healthy
Stuck or failed open stuckOpen
Stuck or failed closed stuckClosed

Voltage EI Healthy healthy

sensor Reading stuck low read VoltageLo
Reading stuck high read VoltageHi

Current | IT Healthy healthy

sensor Reading stuck low readCurrentLo
Reading stuck high readCurrentHi

Position | ISHo Healthy healthy

sensor Reading stuck open stuckOpen
Reading stuck closed stuckClosed

Table 1. ADAPT Signal and sensor naming conventions

ITI.B. Setup for Inputs and Outputs

Suppose a Bayesian network has m discretized input variables X = {X1,..., X;,}. The cardinality of X € X
is denoted by Q(X). A variable X with Q(X) = k states has k — 1 thresholds, {t1,...,t;x—1}. For example, a
random variable with Q(X) = 3 states (—o0, 0], (0, 7], (7,00) has two thresholds ¢; = 0 and t2 = 7.

In our parametric analysis, we are interested in varying thresholds. For simplicity, suppose that we vary
each threshold independently of the other thresholds. Consider a particular threshold ¢; € {t1,...,tx—1}. By
slightly increasing or decreasing ¢; with a small amount €, we obtain a perturbed threshold ¢, € {t; —¢, t;,t;+
e}. Perturbations can be introduced for each threshold t; € {t1,...,tx—1}, resulting in

{ti — e, ts,t; +e}|F~t =3k1

possible combinations under this simple model. In addition, the simultaneous variation of multiple variables
Y, where Y C X, is of interest. Suppose |Y | =¢,Y = {Y1, ..., Yo}, and Q(Y7) = kq, ..., Q(Yy) = Y,. We

ADAPT - Parameter
- . PMA Selection &
Bayes Model - Parametric Data )
Analysis Analysis Y
e T R T
[ N n—factor | S JI@ : }/
Scenario - = 8
BN execution : = %
Data Analysis

Figure 3. Architecture and workflow of the parametric analysis
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then obtain
3l ox 3l >3 x... x3=23"

where the conservative lower bound 3¢ is due to the fact that for each variable Y € Y, Q(Y) > 2.

Each ADAPT scenario contains m = 80 streams of sensor data from ADAPT. Data comes from voltage
sensors, temperature sensors, and current sensors; each sensor reading is mapped to a discrete state of a
BN node. Making the conservative assumption that all sensors produce continuous values that need to be
discretized, a full exploration of the thresholds of the ADAPT BN using m = ¢, would require testing 38°
combinations, a very large and computationally infeasible number. In addition, each scenario contains a
large amount of sensor readings over time, typically 2200+ timesteps, making exhaustive testing infeasible.

Using our parametric analysis approach, we avoid such exhaustive testing. Instead of varying a threshold
by a fixed amount € as indicated above, the variation is randomized within a fixed number of bins, each
bin corresponding to a range of variation. This allows the perturbation of the thresholds to be represented
discretely; the number of possible continuous threshold values can now be represented as a finite number of
a combinations through the use of bin assignment. In the experiment reported here, five bins were used (see
Figure 4).

Bin1 Bin 2 Bin 3 Bin 4 Bin 5

@
Threshold

Figure 4. The binning of an individual threshold. Each bin corresponds to the level of variation from the nominal
value.

Figure 4 illustrates how variation (from the nominal unmodified threshold) is binned into five bins. The
nominal threshold values were perturbed by +20% in our experiments (( = .2, where ( is the maximum
percent to positively or negatively perturb a threshold). This resulted in the following as ranges of variation
for the bins:

Bin 1 (large negative changes: —20% to —12%),

Bin 2 (small negative changes: —12% to —4%),

(
Bin 3 (minimal negative and positive changes: —4% to +4%),
Bin 4 (small positive changes: +4% to — + 2%), and

(

Bin 5 (large positive changes: +12% to +20%).

As the number of bins increase for a given (, the range of variation each bin represents decrease. For a
particular bin b; € {1,...,n} in PT with n bins, a nominal threshold 6 and maximum percent to perturb (,
a perturbed threshold 6’ can be acquired via by the following formula:

0 = ((1/n) * (b — 1 + rand[0,1]) — .5) x 2¢0 + 6

Since there are an average of 3-4 thresholds for each of the 90 ADAPT sensors requiring discretization,
there are some 300 thresholds that require testing. An exhaustive combinatorial exploration is not possible
due to the complexity of the parameter space, which would require some 53%° = 102%” test cases. We therefore
used a combination of n-factor combinatorial exploration and Monte Carlo generation to dramatically reduce
the number of test cases without losing too much coverage.

This generation method is motivated by the fact that in real systems, most failures are caused by a
specific, single value of one input variable or parameter. The case that a fault is triggered by a specific
combination of two variables is much less likely. Even more unlikely is a situation where 3 input variables
must have specific values in order to trigger the failure; the involvement of 4 or more variables can be, for
most purposes, ignored. This observation' !® has been used to develop the n-factor combinatorial testcase
generation. Here, the generated cases completely cover all combinations of parameters up to n. Table 2
shows the number of test cases generated for various different experiments and settings, demonstrating the
dramatically smaller number of test cases generated. For our experiments, we used n = 3, which guarantees
that all errors involving the specific setting of three or fewer parameters will be exercised by at least one
test.
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’ # Thresholds ‘ # Bins H Combinatorial | 1-factor ‘ 2-factor ‘ 3-factor ‘ 4-factor ‘

5 5 3-10° 10 | 68 [<1s] 360 [<1s] 1,534 [2s]
12 5 244 - 10° 10 | 99 [<1s] 690 [2s] 4,355 [85s]
5 10 100 - 10® 20 | 255 [<1s] 2,768 [2s] | 24,338 [100s]
12 10 1-10'2 20 361 [2s] | 5,317 [66s] -
20 var 87-10'® 34 556 [2s] | 9,640 [610s] -

Table 2. Number of test cases generated with full exploration (combinatorial) and n-factor (n = 1,2, 3,4) exploration
for various numbers of parameters and bins

In our experiment, the tool generated 1405 test-cases to be evaluated for the 300 threshold input space,
each with 5 bins. The individual test-case were then evaluated using the DXC Framework, where the sensor
data is passed to the BN model using a particular combination of modified thresholds.

Results for each run were obtained by collecting the posterior probabilities of health nodes for the BN
at each timestep. These posterior probabilities are used to determine the health state of components in the
system, indicating whether they are healthy or faulty. The ProADAPT BN outputs the posterior probabilities
of 120 health nodes.

III.C. Effects of Parameter Perturbation

In this section, we present selected results of our initial experiments on parametric analysis of the ADAPT
Bayesian HM with single fault scenario. The main purpose of this discussion is not to provide details on
specific findings of the ADAPT BN and scenario, but to illustrate which kinds of analyses our parametric
threshold testing supports, and which V&V relevant conclusions can be drawn.
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Figure 5. Selected health nodes: minimal differences (node Health_relay_ey173_cl, left) and major discrepancies (node
Health_fanl_speed_st515, right)

The effects of parameter perturbation can be visualized by plotting the temporal trace of a health node
which is the posterior probability of a certain state occurring over time. Figures 5, 6 are examples of such
traces, showing the posterior probability of an unhealthy state occurring. Large changes are indicative
of a change in state of a component in the ADAPT Testbed. Values for the perturbed trace (blue) are
superimposed on the unperturbed trace (red). Figure 5(left) shows the posterior probabilities of the health
for relay “ey173” (see Figure 2 for location of the relay) for a single test case with modified threshold
values. Here the effect of a perturbed value (red) is only slightly different from the nominal; the Bayesian
network computes the same result. In more severe cases, however, a fault can go undetected due to threshold
modification. Figure 5(right) shows the nominal case detects a fault around the 100th timestep, which is
undetected.

Threshold perturbation has other negative effects such as delaying a diagnosis Figure 6(left). In this case,
there is a several hundred timestep difference between detection in the nominal case and the perturbed case,
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Figure 6. Temporal traces for a selected health node: event can be detected late (left) or not be detected at all (right).

corresponding to a 15 second delay in the diagnosis of a fault. Figure 6(right) shows a complete undetection
of a change in state of the health node through the duration of the scenario with no change in posterior
probability.

IV. Clustering Analysis

A manual analysis of the results of thousands of test cases with hundreds of variables is not possi-
ble. Therefore, specific analysis and visualization techniques are necessary to deal with this large, high-
dimensional data set. In this paper we use clustering, an unsupervised machine learning technique to
automatically find structure in this large data set, to analyze sensitivity and to support root-cause analysis.
Since we are not interested in a full time-series analysis, we first extract features from the data, i.e., we
summarize each temporal trace of a health node for each experiment by one or more scalar values. For
example, we might choose the maximum posterior probability of this health node during the execution of
the scenario.

Clustering then groups all test cases (each represented by a set of feature values) according to their
similarity into several classes (usually up to around a dozen). Class membership for each test case can be
used for visualization, report generation, and additional analysis. In the following, we discuss each of the
individual processing steps and show results of experiments.

IV.A. Feature Selection

The analysis of each scenario produces a large amount of data containing time series of the posterior marginals
of the health nodes of the model. In our running example, each scenario produces around 30 GB of data
(2200 time steps ¢, for 120 health node marginals x; for 1405 test cases C;). Stored as a single matrix, M; ; i
would be the posterior probability (a double value) of a health node x; at timestep ¢, with the threshold
parameters set by test case C;.

In order to reduce the size and dimensionality of the data set, we use feature selection (Table 3). A
feature “summarizes” one temporal trace Mi,jyzb by a single scalar value. Selected traces of health nodes
can be ignored or multiple, different features can be selected. Although feature selection loses substantial
data, it allows the capture of information which is critical for the analysis and makes the learning task
feasible. Table 3 lists the currently available features. The minimum value feature F}, for example takes the
minimum of any posterior value of the given health node for each test case. With this feature, the analysis
can distinguish between cases where a health node always shows a healthy status and those where problems
(low health posteriors) are annunciated. Similar to the maximum value, this feature can be used to detect
cases of missed alarms (or false alarms).

bHere, we are using Matlab-style notation, where “” denotes all indices of this dimension, in our case 1...2200.
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F; | min value min M; ;..

F5 | max value max M ;..

Fy | mean square error wrt nominal | & S0 (M ;5 — Mo j)?)
Fy | KL divergence o Zg(Mi,J}k log %;7;]’2)
F5 | min difference value min | M, ;. — Mo ;.|

Fs | max difference value max | M, ;. — Mo ;.|

F, | tsteps larger than tol Z{klei e Mo [>tol} 1

Table 3. List of features. M; ;. (in Matlab-style notation) corresponds to the temporal trace of the health variable z;
for the run C;, and My .. to that of the run with nominal (unperturbed) thresholds. C is the number of test cases, N
the length of a temporal traces. In our experiments, tol was set to 0.5.

The next set of features compare the current test case with a nominal test case Cy with undisturbed
thresholds. These features can be used to extract sets of test cases where the perturbed thresholds actually
caused substantially different probabilities of the health nodes. Most commonly, we use the mean square
error Fj.

Finally, F7 is a feature which allows the analyst to use temporal properties for clustering. This feature
gives an indication on how long (i.e., number of time steps) substantial differences in the posterior exists. It is
helpful to distinguish cases where only short deviations from the nominal case (e.g., transients) are detected
with more severe situations as shown in Figure 6. Similar features can be defined to directly extract delays
in rising edges.

Within our clustering system, additional features can be easily defined. A graphical user interface (Fig-
ure 7) allows the user to select variables and features for each experiment. With this tool, bad test cases can
be masked, temporal subranges selected, and customized features inserted (inset window). A major portion
of the GUI is used to control the actual clustering experiments.
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Figure 7. GUI for feature selection and clustering

IV.B. Clustering

As described earlier, clustering is an unsupervised machine learning technique which takes a vector of features
for each test case and sorts the test cases into a number of groups according to their similarity. More formally,
clustering can be seen as solving a mixture problem. Let f; ; be the i-th selected feature for test case j. We
furthermore assume that the feature values are Gaussian distributed, whereby mean values and standard
deviations depend on the class ¢ they belong to: f; ; ~ N(fi,c, afﬁc). The clustering task is now to estimate
the values of y and o2 for each of the classes such that the data are best explained (max p(f|{u,?}).
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There are a number of numerical algorithms to solve this problem, most notably the Expectation Maxi-
mization (EM) algorithm'® or k-means.

For our experiments, we use the AutoBayes tool''®, which automatically generates customized data
analysis algorithms from a compact statistical specification. We preferred this tool over a fixed algorithm
because it can handle data which are not Gaussian distributed (e.g., for features, which return discrete values)
and because of its user interface (Figure 7). The AutoBayes tool also generates a number of standardized
HTML reports which describe the experiment with the used parametric variations and shows various plots
of the data. For details on the use of the HTML reports see.® All figures in this paper have been extracted
from these autogenerated reports.
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IV.C. Experiments and Results

After features have been selected, clustering is performed, sorting each of the test cases into their respective
class. Usually, we split the data into 3—7 classes. A good visual overview of the data is produced in the
autogenerated report using scatter plots. Here the features are plotted over a single perturbed threshold,
whereby each test case is represented as a single point. Figure 8(left) shows a scatter plot for the values of
threshold €242 on the x-axis. The nominal threshold value is 21.4 as indicated in the name. On the y-axis,
the mean squared error of the health node of battery 2 (feature F3) is shown. Each of the 1405 test cases is
is shown as a cross. For values near or below the nominal threshold, the error is close to zero, which means
that the BN reasoning is not sensitive to this variation. However, as this particular threshold is increased,
a significant error is introduced. As the threshold surpasses 24, the error grows dramatically. From this we
can conclude that modifying the 21.4 nominal threshold to an excess of 24 of component €242 will result in
significant error in diagnosis of battery 2 health. In this case, the nominal value of 21.4 is considerably far
away from the “cliff”, so a sample safety-region around the nominal value exists.

In many situations, the error exhibits a sharp jump around some specific value of the threshold. Fig-
ure 8(right) shows that this does not have to be the case. Here, the error stays almost constant for test cases
belonging to one class (shown in dark blue) and growing slowly and continuously for the other class.
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Figure 8. Scatter plot for error in health of battery 2 over threshold e242. A sharp increase in error can be detected
for ©c242 > 24.1 (left). Continuously growing error depending on threshold variations (right).

Figure 9 shows how test cases are sorted into four different groups. Here, the minimum value of the health
node te328 is shown. The lower left region (near a minimum value of zero) is entirely occupied by light and
dark blue points, whereas all points to the right of the cliff belong to the orange and brown classes. It is easy
to see that the light blue class only corresponds to values close to zero. Yellow points always correspond to
values larger than 0.4. These two classes correspond to the two major groups of data. Of more interest to
the analyst is the fact that points of the two other classes (dark blue, brown) cannot only be found in the
very low and high regions, but also in an area where the posterior is between 0.1 and 0.2. This is a clear
indication that some other threshold variations (not shown here) cause an independent (small) raise in the

¢AuToBAYEShas been developed at NASA Ames and is available open source under the NOSA license.
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Figure 9. Scatter plots

posterior. Because this area is well separated from the low (< 0.05) and high (> 0.4) no false or missed
alarms are to be expected.

Of more concern should be the outliers, which can be found in this figure: one test case with a threshold
setting Ogt515 ~ 820 yields a minimum value of around 0.25 (marked with a circle). Since all yellow cases
are supposed to yield values larger than 0.4, this test case should be examined closely for transient effects,
as even a very short transient spike affects the minimum value of that feature. A further indication of a
transient effect are other outliers near that same threshold value.

In Figure 10(left) with only two classes, three major regions can be identified: (1) the blue class with
errors close to zero (meaning: same behavior as the unperturbed BN), a random area (2) with errors around
0.5. Here the outcome of the reasoning can be the same as in the unperturbed case or different. However,
variations in this specific threshold (st515) do not seem to cause this effect. Then, there is an area (3), where
the perturbed BN will always return a wrong value; this is caused if the threshold is larger than 780 (dense
brown area on the extreme right). With a nominal threshold of 661, this area is well away from nominal, so
we could argue that slightly biased sensor readings do not do any harm. Figure 10(right) shows the scatter
plot for the “high” value of the same threshold. If this threshold does not decrease too far, everything is
fine (blue region). However, for values below 780, considerably larger errors are to be expected, although
the errors are still much smaller than a result-flipping 0.5.
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Figure 10. Scatter plots

Finally, Figure 11 shows results obtained from using the temporal feature F7. A covariance analysis
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Figure 11. Scatter plots for temporal features

quickly reveals that only thresholds for €281 and e340 have any temporal influence in the sense that the
overall deviation of a health value from the nominal case extends for longer periods of time. The majority of
the test cases are clustered into one class (dark blue in Figure 11) representing situations where no temporal
differences are observed (1078 of 1405 test cases). 179 (light blue) and 119 (light green) test cases only
affected one of the signals. The remaining two classes where both signals are strongly influenced (25 of 1405)
or somewhat influenced (4 of 1405, orange) are of most interest for the analysis.

Here again, clustering was able to structure the data set into different categories such that only a few
test cases must be subjected to a more detailed, manual analysis. Using the autogenerated HTML reports
described in the previous section can be used to specifically visualize these selected test cases.

V. Conclusions

In this paper, we have presented an advanced technique for the analysis of Health Management models.
Using a combination of n-factor combinatorial exploration and Monte Carlo techniques, the health model
is exercised with variations of perturbed parameters. Our technique yields a good coverage of the state
space without making testing infeasible due to the combinatoral explosion. The analysis technique for
health models used here is in the form of Bayesian Networks, but our approach is not limited to such
a modeling formalism. We systematically perturbed discretization thresholds for the sensor nodes of the
network. Incorrect threshold values can easily corrupt the diagnosis reasoning and lead to false alarms or
missed events.

Our parametric testing tool generates hundreds to thousands of test cases. Each test run, when executed
on the health model, produces temporal traces for the posterior values for each of the health nodes. Since
such a large and high-dimensional data set cannot be analyzed manually, we use clustering, an unsupervised
machine learning technique to automatically sort test results into groups and to find structure in this data
set. With autogenerated HTML reports for individual runs and scatter plots to visualize clustering results,
the analyst is able to quickly detect potential weaknesses and unwanted parameter sensitivity in the health
model.

The experiments presented here deal only with one sort of perturbed model parameters: the thresholds.
Another important source of parameters in a Bayesian health models are the entries in the CPTs. These
tables contain a significant amount of design knowledge and information on the reliability of individual
components (e.g., a component’s mean time between failures (MTBF) converted to a probability). Only an
in-depth analysis of such a health model can reveal if the model is appropriate to capture the failure modes
if there are dangerous parameter sensitivities, or even if more reliable components are needed. This analysis
can also be used to detect many classes of BN modeling errors, like missing or incorrect CPT values. Our
approach to parametric testing and subsequent advanced analysis of the test data can help to address these
questions.
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