
Adaptive Control of Bayesian Network Computation
Erik Reed

Carnegie Mellon University
NASA Research Park

Moffett Field, CA 94035
erikreed@cmu.edu

Abe Ishihara
Carnegie Mellon University

NASA Research Park
Moffett Field, CA 94035
abe.ishihara@sv.cmu.edu

Ole Mengshoel
Carnegie Mellon University

NASA Research Park
Moffett Field, CA 94035

ole.mengshoel@sv.cmu.edu

Abstract—This paper considers the problem of providing, for
computational processes, soft real-time (or reactive) response
without the use of a hard real-time operating system. In par-
ticular, we focus on the problem of reactively computing fault
diagnosis by means of different Bayesian network inference algo-
rithms on non-real-time operating systems where low-criticality
(background) process activity and system load is unpredictable.

To address this problem, we take in this paper a reconfigurable
adaptive control approach. Computation time is modeled using
an ARX model where the input consists of the maximum number
of background processes allowed to run at any given time. To
ensure that the reactive (high-criticality) diagnosis is computed
within a set time frame, we introduce a minimum degree
pole placement controller to impose a limit on the maximum
number of low-criticality processes. Experimentally, we perform
electrical power system diagnosis using a Bayesian network
model of and data from a NASA electrical power network. The
Bayesian network inference algorithms likelihood weighting and
junction tree propagation are successfully applied and changed
mid-simulation to investigate how inference computation time
changes in an unpredictable operating system, as well as how
the controller reacts to inference algorithm changes.

I. INTRODUCTION

Probabilistic graphical models can be a valuable method
for real time diagnosis of system health in electrical power
systems and aerospace systems [1]. One class of probabilistic
graphical models, Bayesian networks (BNs), are directed,
acyclic graphs capable of concisely representing cause and
effect using nodes and edges.

Each BN node represents a random variable that can be
observed or inferred based on the behavior of other nodes
via edges, which represent conditional probability distributions
between nodes. For example, a BN model of an electrical
system could represent each hardware component as a set of
nodes, each with a set of discrete states, such as low, medium,
and high; in the case of a node issuing a command, this could
be on or off. Sensor components are observed nodes, whereas
the state of a hidden component, like the health of a motor,
can be inferred by using evidence in the system to compute
a most likely explanation. Efficient BN algorithms have been
developed to perform a wide range of automated reasoning,
including model-based diagnosis [2].

Our research investigates the integration of control theory
with AI algorithms, in particular BN inference, to allow
computation to reactively operate in an operating system that
is not a hard real-time operating system. We are interested in

how model-based diagnoses interacts with an operating system
(OS) on a device when performing inference. The device could
potentially have CPU load due to active involvement by a user
or due to other computational processes. Such processes are
typically unpredictable but can be controlled. We distinguish
between three types of processes running on the OS: high-
criticality (reactive and essential), medium-criticality (non-
reactive and essential), and low-criticality (non-reactive and
non-essential). Which process falls into which of the tree types
is application-dependent; in this paper the BN-based diagnosis
process is high-criticality.

Our integration of control theory to software controls no
physical system; actuators instead control input parameters to
programs, the running of scripts and tasks, or the scheduling
and process management of other programs running in the
operating system. The majority of previous control theory
research has dealt with physical systems with some notable
exceptions [3], [4]. We know of no previous research in the
area of BN computation for systems health diagnosis where
control theory is applied.

This paper will proceed by introducing BN notation and
related in work in Section II. Our controller, the method of
controlling low-criticality processes, and process creation will
be detailed in Section III. Experimental results for reactive
BN control and modeling are discussed in Section IV. We
summarize our results and outline future work in Section V.

II. PRELIMINARIES AND RELATED WORK

A. Bayesian Network Inference

Let X be the BN nodes, E ⊂X the evidence nodes, and e
the evidence. A BN factorizes a joint distribution Pr(X), and
allows for different probabilistic queries to be formulated and
supported by efficient algorithms as we will further discuss
below; they all assume that all nodes in E are clamped to
values e. Computation of most probable explanations (MPEs)
amounts to finding a most probable explanation over the
remaining nodes R = X − E, or MPE(e). Computation
of marginals (or beliefs) amounts to inferring the posterior
probabilities over one or more query nodes Q ⊆ R, specifi-
cally BEL(Q, e) where Q ∈ Q. (In diagnosis using BNs, the
terminology health nodes H , where Q = H , is often used.)
Marginals are used to compute most likely values (MLVs)
simply by picking, in BEL(Q, e), a most likely state.

978-1-4673-0162-6/12/$31.00 ©2012 IEEE 106

Different BN inference algorithms can be used to perform
the above computations. We distinguish between exact and
inexact algorithms. Exact algorithms include join tree propaga-
tion, conditioning, variable elimination, and arithmetic circuit
evaluation. Inexact algorithms include likelihood weighting
and stochastic local search. Both exact and inexact algorithms
have been used to compute marginals and MPEs.

The motivation behind anytime inference [5] and our work
is similar. Anytime inference algorithms are typically local
search algorithms that have a solution at all times, allowing
them to terminate at any point and return a solution estimate.
However, the approaches taken are fundamentally different and
we focus on what can done, on the computing system level,
for existing Bayesian network inference algorithms including
non-anytime algorithms. Our approach enables the use of high-
performing but non-anytime algorithms (like variable elimina-
tion and junction tree propagation [6]) in reactive settings.

B. Feedback Control in Computing Systems

Recently, control theory has been applied to computing
systems including control of HTTP servers [7], [8], email
servers [9], quality of service assurance [10], internet traffic
control [11], and load balancing. Computing systems have
some characteristics that are typically not seen in traditional
control applications in robotics and aircraft. First, modeling of
the plant does not typically start from Newtonian mechanics;
rather it often begins with a black box approach. Second,
actuation can in some cases be almost instantaneous, such
as flipping a bit, or writing a short integer to memory, i.e.
specifying the maximum number of connections to a server.
Third, measurements are often non-noisy but delayed. In
analog sensing, filtering is used to removed noise, and at the
same time can introduce significant (and unwanted) phase lag.
However, in computing systems, a more difficult delay may
appear at the measurement. In applications such as control
of an email server, the (discrete) delay is associated with the
completion of a Remote Procedure Call (RPC). This delay
is usually not known (uncertain). Finally, disturbances can
significantly impact performance. Take the example of the
IBM Domino server [3]: Clients make requests to the Lotus
Notes server via RPCs. Assuming the request is processed, the
impact on CPU usage varies significantly depending on the
request. Sometimes, certain combinations of requests made
independently by different users impact CPU utilization in
a nonlinear manner; this can be regarded as a stochastic
disturbance. However, from the point of view of the control
objective, which is to regulate “RPCs in the server” (RIS),
these disturbances can have a significant impact. These distur-
bances may depend on time of day and day of week.

C. Reconfigurable Control using Modified Recursive Least
Squares

Controllers for computing systems must be designed to run
on a variety of platforms (hardware and software) and account
for unanticipated changes and/or failures that may occur on-
line. As both hardware and software platforms advance at an

enormous pace, it is desirable for a control system to be able
to adapt and keep up with the myriad of possibilities that
exist. Changes that impact the input-output dynamics include
different operating systems, unanticipated low-criticality pro-
cesses, and even different hardware platforms (iPhone versus
a quad-core Linux workstation). A fixed controller, designed
to optimize performance of a particular nominal or unfailed
system, can result in degradation of performance and in some
cases, loss of stability.

There are, in general, two control design approaches to
tackle this problem, robustness and reconfigurability. A ro-
bust control design approach takes into account all possible
variations in system parameters due to change or failure. The
resulting control laws are insensitive to these varying parame-
ters in the sense that the output does not vary significantly from
the nominal performance criteria. The reconfigurable approach
attempts to identify these changes in system parameters,
and adjust the controller on-line, so that performance is not
compromised due to an unforeseen failure.

We consider, in this paper, the reconfigurable approach.
That is, we identify the changes in the parameters during
plant changes and adapt the controller so that performance is
maintained. This approach is termed explicit adaptive control,
in which we must use an explicit parameter identifier. On the
other hand, implicit adaptive control attempts to directly adjust
the controller gains without the use of a separate parameter
identifier.1

The underlying control approach taken is the Minimum
Degree Pole Placement (MDPP) control design approach
proposed by Astrom [12]. In this approach, feedfoward and
feedback controllers are designed to force the open-loop
system to follow a reference model. In the ideal case, model
following is achieved perfectly. However, due to parametric
uncertainty, this is not achieved in practice. This is the
motivation to introduce reconfiguration to the control problem.
During a change in plant dynamics the control effectiveness
may change, requiring a larger or smaller actuator signal to
maintain desired performance.

Plant Modeling: There are several approaches to the mod-
eling of computation for control applications. The approach
taken here is termed linear Auto-Regressive modeling with
eXogenous input or linear ARX. Nonlinear approaches, such
as discrete time neural networks, may also be used. Nonlinear
modeling is more complex yet may be able to capture inherent
nonlinear behavior otherwise unaccounted for in ARX mod-
eling. On the other hand, linear modeling is generally simpler
to understand and implement.

Suppose the plant is described by an ARX model with an
additive noise term. Denote P (i), y(i)(k), u(k), and η(k), the
plant operator, scalar output, input, and noise at sample time k,
respectively. The integer i denotes a specific plant or device,
such as a particular laptop or desktop. In general, we will
assume that we have a finite set of plants P (i) for i ∈ [1,M].

1Explicit adaptive control is also referred to as indirect adaptive control.
Implicit adaptive control is also referred to as direct adaptive control.

107

The relationship between these quantities is given by:

y(i)(k) = P (i)u(k) = φT (k − d)θ(i) + η(k)

where φT (k − d) denotes the regression vector and consists
of a tapped delay line of input and output measurements, and
θ(i) denotes a vector of parameters corresponding to the ith
plant. A number of methods exist to estimate θ(i) in both batch
and on-line modes. Similar ARX models have been used in
modeling a number of digital processes [3].

The reconfigurable control approach estimates θ on-line and
then uses the estimates to update a control law (see Section
III-B) below. To estimate θ, it is typical to use the recursive
least squares (RLS) method, in which we minimize the cost
function

J =

N∑
i=1

λN−ie2(i), (1)

where e(i) is the error between the true and estimated outputs,
and λ ∈ (0, 1) is the forgetting factor.

The RLS method can lead to two problems when attempting
to track varying parameters. First, a small forgetting factor
needed to track fast or abrupt parameter variations can cause a
large covariance matrix which could lead to covariance “blow
up.” Second, as one decreases the forgetting factor, the size
of the data window gets smaller and it is more likely that
there will exist data collinearities within the data window. To
deal with this issue, the Modified Recursive Least Squares
(MRLS) algorithm prevents singularities in the covariance
matrix by reformulation of the least squares problem [13]. The
cost function to be minimized includes additional penalties on
changes in the parameter values in the form of temporal and
spatial constraints. Weighting matrices are included to adjust
the extent of penalization on each parameter variation. For this
case, we define the cost function as

J =

N∑
k=1

‖y(k)− xT θ(N)‖2λN−k +m‖θ(N)− θ(N − 1)‖2.

Here, θ(N) are the parameter estimates at time N .
Setting dJ

dθ = 0, we get the solution,

θ(N) =
[
X T X̃ +mI

]−1 [
mθ(N − 1) + X̃ T y(N)

]
,

where

X T =
[
x(1) x(2) . . . x(N)

]
X̃ T =

[
x(1)λN−1 x(2)λN−2 . . . x(N)

]
yT (N) =

[
y(1) y(2) . . . y(N)

]
We note that the covariance matrix of this algorithm is now

P (t) =
[
X T X̃ +mI

]−1
.

A recursive version of MRLS [14] is given as

θ(t+ 1) = θ(t) + P (t+ 1)x(t+ 1)
[
y(t+ 1)− xT (t+ 1)θ(t)

]
+mλP (t+ 1) (θ(t)− θ(t− 1)) .

To find P (t + 1), it is typical to use the Matrix Inversion
Lemma (MIL). However, due to the additional penalty term,
the MIL leads to the inversion of a (1+m)× (1+m) matrix,
where m is the number of unknown parameters. Thus, we
opt to directly take the inverse. For higher order systems, this
approach may not be acceptable. Ways to reduce the order of
this computation have been proposed [14].

Upon an abrupt plant failure, we would like to adapt
our controller when the parameter estimates converge. The
convergence time may vary depending on factors such as input
excitation. We monitor the aposterior prediction errors,

Prediction Error =
∣∣y(t)− xT (t)θ(t− 1)

∣∣ . (2)

We then define some Error Tolerance, and adapt our controller
when

Prediction Error > Error Tolerance.

III. FRAMEWORK AND METHODS

A. Bayesian Network Computation as a Plant

The plant to be controlled is a dynamic system operating
in the discrete time domain. For our purposes, this plant
definition encompasses computers including mobile phones,
tablets, net-books, laptops, desktops, and high-end multi-core
systems. The plant is a digital computer performing high-
criticality (or reactive) tasks. One high criticality task, BN
computation, performs fault diagnosis. We also assume that
on this computer, low- and medium-criticality (or background)
tasks are running and are competing for CPU cycles, memory,
and other computer resources.

Control Input: The input to the plant, which ultimately is
computed by a control algorithm, is denoted by u(k). This
input determines the number of low-criticality processes that
are allowed to run at any given sample time. Denote the actual
number of low-criticality processes by v(k) where k denotes a
sampling index. In this work, if v(k) ≥ u(k), then processes
are terminated until v(k) < u(k). The termination process
happens nearly instantaneous with respect to the sampling
period.

Disturbance Generation: We model, for simplicity, dis-
turbances to a computer (including user disturbances) as a
Poisson process with rate λ. This introduces a stochastic delay
in the actuation of the plant in the sense that even if the control
input u(k) increases at the next time step, u(k + 1) > u(k),
the probability of the actually number of processes increasing
is low. We model this phenomenon by a stochastic delay in
the control input to the plant.

B. Minimum Degree Pole Placement (MDPP) Controller

We use the notation and MDPP derivations defined in [12]
for the controller:

H(q) =
b0q + b1

q2 + a1q + a2

Here there are no zeros canceled; they are given by q = −b1
b0

.
The MDPP algorithm proceeds as follows:

108

Step 1:

B = b0q + b1 = B+B− =
B

A

Given that there is no zero cancellation, B+ = 1. B+

is monic; B− is in general not. Since B+ = 1, then
B− = b0q + b1. Let nA denote the degree of polynomial A.
We have: nA = 2 and nB = 1, giving

Bm = B−B′m = B′m(b0q + b1)

B′m is a constant because it is the same order as B.
Here Bm = bm0

q + bm1
.

The steady state is given by:

Bm(1)

Am(1)
=

B′m(b0 + b1)

1 + am1
+ am2

= 1

B′m =
1 + am1

+ am2

b0 + b1

Step 2:

AR′ +B−S = A0Am

(q2 + a1q + a2)R
′ + (b0q + b1)S = A0(q

2 +Am1
q +Am2

)

R′ =
R

B+
= R

nR′ = nR = nS = nA − 1 = 1

Verifying compatibility conditions nR′ ≤
max {nam + nA0

− nA, nB− − 1} and nS < nA, we
find that nR = nR′ + nB+ and nA0 = nA − nB+ − 1.
Deriving our controller u, we have:

R′ = q + r1 = R

S = s0q + s1

A0 = q + a0

(q2 + a1q + a2)(q + r1) + (b0q + b1)(s0q + s1)

= A0(q
2 + am1

q + am2
)

R = q + r

Last step is to compute T :

T = A0B
′
m = (q + a0)B

′
m

And we now have: u = T
Ruc −

S
Ry, our control law.

IV. EXPERIMENTS

In our experiments, we use data from ADAPT,2 an electrical
power system at NASA Ames, for performing system health
diagnosis. ADAPT has abundant data freely available and is
representative of many electrical power in aerospace system
[15]. We focus on a small part of ADAPT containing five
components: a relay, DC load, voltage sensor, current sensor,

2http://ti.arc.nasa.gov/tech/dash/diagnostics-and-prognostics/
adapt-diagnostics/

Fig. 2. MRLS estimate of likelihood weighting BN computation time with
λ = .94, m = .1.

and relay feedback sensor. For BN inference and computation,
we use the open source software package Bayes Net Toolbox
(BNT).3 Experiments were performed on a quad core Intel i5
with 8 GB of memory. All processes created and terminated
along with BN inference computation were affixed to a single
core (i.e. fixed CPU affinity) to maximize the competition for
the CPU. A 5 second pause gap was used between each time
step.

A. System Identification

To perform system identification, a squarewave representing
max number of low-criticality processes u(t) was generated.
The squarewave interval size was 20 timesteps and integer
values between 0 and 15 inclusive were selected uniformly
at random for each interval for u(t). y(t) represents the
computation time required for BN inference. Both likelihood
weighting and junction tree propagation inference algorithms
were used. During the simulation, low-criticality processes
were generated via a Poisson distribution with a mean of 15
seconds. Figure 1 shows the squarewave controller simulation.
The data y(t), representing the computation time at timestep t
was then fitted with first order least squares (LS) and recursive
least squares (RLS) using y(t) = a1y(t−1)+ b1u(t−1). The
2nd order RLS model y(t) = a1y(t−1)+a2y(t−2)+b1u(t−
1)+b2u(t−2) appeared to be typically more resilient to noise.

Figure 2 models the squarewave controller simulation with
a forgetting factor λ and MRLS parameter m. The parameters
used in Figure 2 provide a good fit and are used in the
adaptive MDPP simulation (Section IV-C). The 2nd order LS
parameters that best minimized error for estimated likelihood
weighting inference computation time were a1 = .416, a2 =
.335, b1 = .010, b2 = −.064. This led to the initial conditions
of the MDPP controller: Am1

= −(a1 + a2) = −.812,
Am2

= a1a2 = .194, and Bm0
= 1+Am1

+Am2
= .382. For

the MRLS model, we additionally use λ = .93 and m = .1.

B. Naive Controller

To easily visualize how processes are being controlled, a
naive 0th order control was implemented (Figure 3). Red
circles indicated when a low-criticality process was created
pseudo-randomly and green stars indicate that a low-criticality
process was terminated. The 0th order controller is unreliable
because it terminates processes too easily; there are transient

3http://code.google.com/p/bnt/

109

Fig. 1. Likelihood weighting computation time y(t), least squares fit (LS), recursive least squares fit (RLS), and 2nd order RLS fit (RLS2) for a squarewave
controller u(t).

(a) (b) (c)

Fig. 4. Adaptive MDPP Control where model is reality (i.e. ŷ(t) = ym(t)). At timestep 200, an inference algorithm change from likelihood weighting to
junction tree propagation is simulated. (a) shows the parameter values (note: a1h corresponds to the true parameter â1, as well as with b1h, . . .). (b) shows
tracking, modeling, and parameter error. The errors converge to zero before and after the inference algorithm change. (c) shows the adaptive MDPP tracking
a squarewave uc(t). yEst(t) corresponds to ŷ(t).

Fig. 3. A naive 0th order controller. A random low-criticality process is
terminated when computation time y(t) exceeds a fixed setpoint (2 seconds).

computation time increases when a low-criticality process is
generated, but their effect decreases after their first timestep
(likely due to the operating system’s process creation overhead
impeding on the BN inference for a short while). The naive
controller is susceptible to noise and terminates an excessive
amount of low-criticality processes. The controllers we discuss
next are more robust with respect to these issues.

C. Adaptive MDPP Controller – Model Tracking

Using the MRLS and MDPP parameters found in Sec-
tion IV-A, an adaptive MDPP controller was implemented.
First, we look at the case where the model parameters found
previously are true and treat them as unknown. MRLS is
used to estimate the unknown parameters âm1

, âm2
, and b̂m0

defined by the model ym(t) = −âm1
ym(t− 2)− âm2

ym(t−
1)+ b̂m0

uc(t−1) and the MDPP controller selects a u(t) that
minimizes error between ym(t) and ŷ(t) for a given uc(t),
where ŷ(t) is the estimated computation time. The simulation
was run for 400 time steps with an inference algorithm change
at timestep 200 (Figure 4). The setpoint uc(t) was given as
the sinusoid uc(t) = 3| sin(t/π)| + .5, which is also used
in Section IV-D. The MRLS model converges on the true
parameter values perfectly in this simulation; the parameter
error converges to zero before and after the inference algorithm
change (Figure 4a). Additionally, the modeling and tracking
error converge to zero (Figures 4b, 4c). Having confirmed the
model performs well in a noiseless environment, we move on
to a more realistic simulation.

D. Adaptive MDPP Controller – Real Environment

Applying the parameters found in Section IV-A, we pro-
duced an effective controller able to track an inference algo-
rithm and setpoint change (Figure 5). The initial θ parameters
were set to the parameters obtained for likelihood weighting
via LS in Section IV-A. Despite a simultaneous inference
algorithm (likelihood weighting to junction tree propagation)
and setpoint change at timestep 200, we see rapid adaptation.
The likelihood weighting algorithm requires significantly more
computation time than junction tree propagation for this par-
ticular BN [16].

110

Fig. 5. Adaptive MDPP controller in real environment. The BN inference
algorithm is changed from likelihood weighting to junction tree propagation
at timestep 200 with an effective adaptation from the MRLS and MDPP. The
setpoint uc(t) was also dropped from 2 to .5 seconds.

(a)

(b)

(c)

Fig. 6. Adaptive MDPP tracking a sinusoidal uc(t). (a) shows the
computation time y(t) aligned with the setpoint uc(t). (b) shows how the
low-criticality process limit u(t) as well as the actual number of low-criticality
processes, which is unknown to the controller and model. The adaptation of
the parameter values a1, a2, b1, and b2 is demonstrated in (c).

Figure 6 incorporates a sinusoidal number of max low-
criticality processes, u(t), without an inference algorithm
change. 6a shows good tracking and a relatively low tracking
error due to noise. 6b shows the actual number of low-
criticality processes and how they are affected by u(t). 6c
shows parameter adaptation and large amounts of movement,
especially near timesteps 100 and 300, which may be due to
the low λ = .93.

V. CONCLUSION AND FUTURE WORK

In this work, we have implemented a novel method of
controlling Bayesian network inference computation time. Our
motivation is to provide soft-realtime (reactive) computation
without the use of a specialized hard real-time OS. The use
of a Modified Recursive Least Squares with a Minimum
Degree Pole Placement controller was effective in tracking
inference algorithm changes and responding well to a varying

setpoint uc(t). The controller was able to withstand the noise
of the operating system and the unpredictable nature of low-
criticality processes. We have only tested on a single device,
however; ideally, such inference algorithm control, and broadly
AI computation control, should be implemented on a host of
devices. Future work will test devices with more exotic hard-
ware, such as mobile devices and high performance clusters,
as well as alternative methods to terminating processes–such
as suspending and adjusting process priority.

ACKNOWLEDGMENT

This material is based upon work supported by NSF awards
CCF0937044 and ECCS0931978.

REFERENCES

[1] U. Lerner, R. Parr, D. Koller, and G. Biswas, “Bayesian fault detection
and diagnosis in dynamic systems,” in Proceedings of the National
Conference on Artificial Intelligence. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2000, pp. 531–537.

[2] O. J. Mengshoel, M. Chavira, K. Cascio, S. Poll, A. Darwiche, and
S. Uckun, “Probabilistic model-based diagnosis: An electrical power
system case study,” vol. 40, no. 5, pp. 874–885, 2010.

[3] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback control of
computing systems. Wiley Online Library, 2004.

[4] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Müller, M. Pezzè, and M. Shaw, “Engineering self-
adaptive systems through feedback loops,” Software Engineering for
Self-Adaptive Systems, pp. 48–70, 2009.

[5] M. Pitarelli, “Anytime decision making with imprecise probabilities,” in
Proceedings of the Tenth Annual Conference on Uncertainty in Artificial
Intelligence (UAI-94), Seattle, WA, 1994, pp. 470–477.

[6] S. Lauritzen and D. J. Spiegelhalter, “Local computations with probabil-
ities on graphical structures and their application to expert systems (with
discussion),” Journal of the Royal Statistical Society series B, vol. 50,
no. 2, pp. 157–224, 1988.

[7] T. Abdelzaher and N. Bhatti, “Web server QoS management by adaptive
content delivery,” in Quality of Service, 1999. IWQoS’99. 1999 Seventh
International Workshop on. IEEE, 1999, pp. 216–225.

[8] Y. Diao, J. Hellerstein, and S. Parekh, “Optimizing quality of service
using fuzzy control,” Management Technologies for E-Commerce and
E-Business Applications, pp. 42–53, 2002.

[9] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus,
“Using control theory to achieve service level objectives in performance
management,” Real-Time Systems, vol. 23, no. 1, pp. 127–141, 2002.

[10] C. Xu, B. Liu, and J. Wei, “Model predictive feedback control for QoS
assurance in webservers,” Computer, vol. 41, no. 3, pp. 66–72, 2008.

[11] C. Hollot, V. Misra, D. Towsley, and W. Gong, “On designing improved
controllers for aqm routers supporting tcp flows,” in INFOCOM 2001.
Twentieth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, vol. 3. IEEE, 2001, pp.
1726–1734.

[12] K. Astrom and B. Wittenmark, Adaptive control. Addison-Wesley
Longman Publishing Co., Inc., 1994.

[13] J. Monaco, D. Ward, R. Barron, and R. Bird, “Implementation and flight
test assessment of an adaptive, reconfigurable flight control system,”
in Proceedings of the 1997 AIAA Guidance Navigation and Control
Conference, AIAA Paper, vol. 97, 1997, p. 3738.

[14] M. Bodson, “An adaptive algorithm with information-dependent data
forgetting,” in American Control Conference, 1995. Proceedings of the,
vol. 5. IEEE, 1995, pp. 3485–3489.

[15] S. Poll, A. Patterson-Hine, J. Camisa, D. Garcia, D. Hall, C. Lee,
O. Mengshoel, C. Neukom, D. Nishikawa, J. Ossenfort et al., “Ad-
vanced diagnostics and prognostics testbed,” in Proceedings of the 18th
International Workshop on Principles of Diagnosis (DX-07), 2007, pp.
178–185.

[16] O. Mengshoel, I. A., and E. Reed, “Reactive Bayesian network computa-
tion using feedback control: An empirical study,” in Bayesian Modeling
Applications Workshop at UAI-12, 2012.

111

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

