Adaptive Control of Bayesian Network Computation

PBP

Erik Reed, Abe Ishihara, and Ole J. Mengshoel

• Bayesian Networks (BNs) have been successful in diagnosing faults in aerospace electrical power systems.

- We use data from ADAPT, an electrical testbed at NASA Ames, and a subsection of the full BN.
- During each timestep of a simulation,

- BN inference is performed in an unpredictable environment with low criticality background processes, which compete for the CPU.
- These processes can be terminated (controlled) to ensure the BN inference completes in a set amount of time.

the states of each node are calculated using sensor evidence.

Adaptive Controller

(likelihood weighting) and JTP (junction tree propagation).

Minimum Degree Pole Placement Feed Feed backward forward

a_h

a_h

Open loop model fitting with first order least squares (LS), first order recursive least squares (RLS), and second order recursive least squares (RLS)

The parameters $a_{1,2}$ and $b_{1,2}$ are learned. u(t) is the max number of background processed given by a random square-wave.

$$\hat{y}(t) = a_1 \hat{y}(t-2) + a_2 \hat{y}(t-1) + b_1 u(t-1) + b_2 u(t-2) \quad (1)$$

0.8

0.6

0.4

Parameter adaptation with LW to JTP algorithm change at timestep 200.

Adaptive Parameter Tracking

Sinusoidal Set-point

Closed loop simulation with sinusoidal computation time set-point $u_c(t)$. Background processes were created pseudo-randomly with a Poisson function.

> Parameter adaptation during the sinusoidal set-point simulation. Parameters are defined in (1).

Inference Algorithm and Set-point Change

set-point change at timestep 200.

© 2012 Carnegie Mellon Silicon Valley.

All rights reserved.

http://sv.cmu.edu